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Abstract. Extremal Optimization (EO), a new local search heuristic, is used to approximate ground states
of the mean-field spin glass model introduced by Sherrington and Kirkpatrick. The implementation extends
the applicability of EO to systems with highly connected variables. Approximate ground states of sufficient
accuracy and with statistical significance are obtained for systems with more than N = 1000 variables using
±J bonds. The data reproduces the well-known Parisi solution for the average ground state energy of the
model to about 0.01%, providing a high degree of confidence in the heuristic. The results support to less
than 1% accuracy rational values of ω = 2/3 for the finite-size correction exponent, and of ρ = 3/4 for the
fluctuation exponent of the ground state energies, neither one of which has been obtained analytically yet.
The probability density function for ground state energies is highly skewed and identical within numerical
error to the one found for Gaussian bonds. But comparison with infinite-range models of finite connectivity
shows that the skewness is connectivity-dependent.

PACS. 75.10.Nr Spin-glass and other random models – 02.60.Pn Numerical optimization – 05.50.+q
Lattice theory and statistics (Ising, Potts, etc.)

1 Introduction

The Sherrington-Kirkpatrick (SK) model [1] has provided
a rare analytic glimpse into the nature of frustrated spin
glasses below the glass transition. It extends the notion
of a spin glass on a finite-dimensional lattice introduced
by Edwards and Anderson (EA) [2] to infinite dimen-
sions, where all spin variables are infinitely connected and
mean-field behavior emerges. In this limit, analytically in-
tractable geometric properties of the lattice submerge.
Consequently, the SK model simply establishes mutual
bonds between all variables. Many features of this highly
connected model have become analytically accessible with
Parisi’s replica symmetry breaking (RSB) scheme [3].
Only recently have RSB models with long-range but finite
connectivity been analyzed successfully [4]. A comparable
treatment of EA is still missing.

The SK model remains a topic of current re-
search [5–7]. For one, its mathematical challenges, leaving
certain scaling exponents as-of-now intractable, continue
to inspire new theoretical approaches [8]. Furthermore, as
scaling arguments [9,10] for EA suggest an entirely differ-
ent picture, the fundamental question to the relevance of
mean-field theory for any description of realistic systems
at low temperature remains unanswered.

The challenge of the SK model is exemplified by the
fact that it is an NP-hard problem to find the ground
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state of its instances [3]. Unlike in a spin model of ferro-
magnetism, in which couplings Ji,j = 1 always try to align
neighboring spins, in a spin glass model like SK or EA,
each spin is frustrated by a competition between randomly
drawn, aligning and anti-aligning couplings (say, Ji,j =
±1) to its neighbors. As a result, its potential energy
landscape is characterized by a hierarchy of valleys within
valleys [11] with a number of local minima growing expo-
nentially in the system size [3]. Since its low-energy land-
scape features prominently in its low-temperature proper-
ties, even numerical insights have been hard to come by.
Some earlier work in this area has been focused on gradient
descent [12,13] or Simulated Annealing algorithms [14],
extrapolations to low temperatures from perturbative ex-
pansions near the glass transition [15], or on exact meth-
ods to enumerate low-lying energy values [16]. And even
with the most sophisticated methods, like genetic algo-
rithms (GA), accurate approximations have been limited
to system size of N ≤ 300 [5–7].

Here, we propose an alternative optimization proce-
dure, based on the Extremal Optimization (EO) heuris-
tic [17,18]. Our implementation of EO [19] is extremely
simple and very effective, allowing to sample systems of
sizes up to N ≈ 1000 with sufficient accuracy and statis-
tical significance. This approach produces results that not
only verify previous studies by independent means, but
also improve the accuracy. Previous studies [5,7] suggest
that the fluctuation exponent of the ground state ener-
gies ρ is near to 3/4, excluding an earlier conjecture of
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5/6 [20,21]. Here, we double the size of the scaling regime
to find ρ = 0.750(3). These results strongly support ana-
lytical arguments by references [5,22] in favor of ρ = 3/4,
assuming that such an exponent in a solvable model should
be a simple rational number.

2 EO Algorithm

Our implementation of τ -EO proceeds as follows [17,18]:
Assign to each spin variable xi(=±1) a “fitness”

λi = xi

N∑

j �=i

Ji,jxj , (1)

i.e. the (negative) local energy of each spin, so that

H = − 1
2
√

N

N∑

i=1

λi (2)

is the familiar Hamiltonian of the SK model. For general
bond matrices Ji,j , such as those drawing from a continu-
ous Gaussian bond distribution with varying bond-weights
attributed to different spins, more refined definitions of λi

should be used [17,25]. Here it is conceptually and compu-
tationally most convenient to draw discrete bonds J from
{−1, +1} with equal probability, such that 〈J〉 = 0 and
〈J2〉 = 1.

A local search with EO [17] ideally requires the ranking
of the fitnesses λi from worst to best before each update,

λΠ1 ≤ λΠ2 ≤ . . . ≤ λΠN , (3)

where i = Πk indicates spin xi as having the k-th ranked
fitness. At each update, one spin of low fitness is forced
to change unconditionally. Since EO does not converge to
a specific configuration, it outputs the best-found after a
certain number of updates.

Following reference [17], it is most expedient to approx-
imately order the λi in equation (3) instead on a binary
tree of depth O(log2 N) with the least-fit spins ranking
near the root. Unlike for sparse bond-matrices [18], flip-
ping one spin also changes the fitness of all other spins,
albeit by a small amount, ∆λi/λi = O(1/N). To avoid
the cost of O(log N) for re-ordering the entire tree each
update, a dynamic ordering scheme is used here: all λi are
re-evaluated, but the tree is parsed only once, node-by-
node, starting at the root. The fitness on the current node
is only compared with its two sub-nodes and exchanged,
iff its fitness is better. In this way, a newly improved fit-
ness can be moved away from the root several times, but
newly worse fitnesses move at most one step towards the
root. Yet, a spin which suddenly attained a low fitness
would move to the root at most within O(log2 N) up-
dates. Hence, re-ordering of fitnesses occurs faster than
mis-orderings can escalate because ∆λ/λ � 1.

In a τ -EO update, a spin is selected according to a
scale-free probability distribution P (k) ∼ k−τ over the
ranks k ∈ {1, . . . , N} in equation (3). Since the ranking

  

Fig. 1. Plot of the average best energy per spin found by
EO as a function of the parameter τ . For each system size
N , a set of test instances were created and optimized with
τ -EO, each for N3 update steps. Each data point represents
the average over the best-found energies obtained with that τ .
In accordance with Ref. [26], the optimal choice for τ within
the given runtime moves closer to unity slowly with increasing
system size. Within the range of N used here, a fixed τ ≈ 1.2
appears to be effective.

here is not linear as in equation (3) but on a tree, a level l,
0 ≤ l ≤ 	log2(n)
 is selected with probability ∼ 2−(τ−1)l,
and one randomly chosen spin on the lth level of the tree
is updated [17]. In this manner of ranking and selecting
from a binary tree, an ideal selection according to P (k)
is approximated while saving O(N) in the computational
cost. Tests show, in fact, that the τ -dependence for op-
timal performance of this algorithms follows the generic
behavior described in reference [26], see Figure 1. EO at
τ = 1.2 finds consistently accurate energies using O(N3)
update steps in each run, at least for N ≤ 1000, verified
by the fact that our data reproduces the exactly known
energy of the SK to about 0.01%, see Figure 2. Including
the linear cost of recalculating fitnesses and dynamic or-
dering, the algorithmic cost is O(N4). Runs take between
≈1 s for N = 63 to ≈20 h for N = 1023 on a 2 GHz
Athlon CPU.

It is not at all obvious that EO would be successful
in an environment where variables are highly connected.
So far, EO has only obtained good results for systems
where each variable is connected only to O(1) other vari-
ables for N → ∞. The update of a single variable hence
impacts the extensive energy of the system only to sub-
leading order, and only O(1) variables need to rearrange
their fitness. Applications of EO to highly connected sys-
tems, where each degree of freedom is coupled to most
others over long-range interactions, proved unsatisfactory:
for instance, in a continuum polymer model [27] with tor-
sion angles between chain elements as variables, even a
minute rotation leads to macroscopic changes in the total
energy, and almost all moves are equally detrimental. In
that case, criteria for move rejection are necessary, which
are decidedly absent from EO so far. But for the SK in a
update near E0 we estimate ∆E/E =

∑
i ∆λi/

∑
i λi �∑

i(∆λi/λi) ∼ 1/
√

N , assuming a sum over terms with
random signs. In fact, the ability to sustain roughly

√
N

perturbations to the system before altering the macro-
scopic state may be one of the advantages of EO.
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Table 1. List of our computational results to approximate
ground state energies e0 of the SK model. For each system size
N , we have averaged the energies over I instances and printed
the rescaled energies 〈e0〉, followed by the deviation σ(e0) in
equation (5). Given errors are exclusively statistical.

N I 〈e0〉 σ(e0)
15 380 100 –0.64445(9) 0.0669(3)
31 380 100 –0.69122(8) 0.0405(2)
49 500 000 –0.71051(6) 0.0293(1)
63 389 100 –0.71868(3) 0.0246(1)
99 500 000 –0.73039(3) 0.01763(7)

127 380 407 –0.73533(2) 0.01468(7)
199 351 317 –0.74268(2) 0.01043(5)
255 218 473 –0.74585(2) 0.00862(5)
399 15 624 –0.75029(5) 0.0061(1)
511 25 762 –0.75235(3) 0.0051(1)
799 725 –0.7551(1) 0.0037(4)

1023 244 –0.7563(2) 0.0029(6)

3 Numerical results

Extensive computations to determine ground state en-
ergies per spin, e0, of about I = 5 × 105 instances for
N ≤ 100 to just I ≈ 250 instances for N = 1023 have
yielded the results listed in Table 1. Note that all val-
ues chosen for N are odd. Using N = 2i − 1 was conve-
nient to ensure a complete filling of all levels on the tree
ranking the fitnesses in Section 2. Subsequently, we added
data at intermediate values of N . For smaller N there
was a minute but noticeable deviation in the behavior of
〈e0〉 between even and odd values of N , with even val-
ues leading to consistently lower 〈e0〉. Either set of data
extrapolates to the same thermodynamic limit, with the
same corrections-to-scaling exponent, but appears to dif-
fer in the amplitude of the scaling corrections. This be-
havior is consistent with the findings for even and odd-
connectivity Bethe lattices [28]. (Note that even N here
implies odd connectivity for each spin in the SK model,
and vice versa.)

We have plotted 〈e0〉 vs. 1/N2/3 in Figure 2. The data
points extrapolate to −0.76324(5), very close to the best
known Parisi energy of −0.76321(3) [15]. All data shown
in Fig. 2 fits to the asymptotic form 〈e0〉N = 〈e0〉∞+a/Nω

with a goodness-of-fit Q ≈ 0.7. The fit gives for the ex-
ponent for scaling corrections ω = 0.672(5), or 2/3 within
1%. This is consistent with analytical results for scaling
corrections obtained near Tg [29] and with numerical stud-
ies of ground state energies [5,7] for the SK model, but also
with EO simulations of spin glasses on finite-connectivity
Bethe lattices and ordinary random graphs [30].

The large number of instances for which estimates of
e0 have been obtained allow a closer look at their distri-
bution. The extreme statistics of the ground states has
been pointed out in reference [31] and studied numeri-
cally in references [6,7]. Being an extreme element of the
energy spectrum, the distribution of e0 is not normal but
follows a highly skewed “extremal statistics” [31]. If the
energies within that spectrum are uncorrelated, it can be
shown that the distribution for e0 is among one of only

Fig. 2. Extrapolation of the data for 〈e0〉 in Table 1 for
N → ∞. The exact result of −0.76321(3) (×) is reproduced
within 0.01% accuracy. The near-linear behavior of the fit
yields a scaling-correction exponent of ω = 2/3 to about 1%.
The inset shows the same data, subtracted by −0.76324 and
rescaled by N2/3, which now extrapolates to the amplitude of
the scaling corrections at ≈0.70(1). Despite “peeling off” layers
of the asymptotic behavior, the data remains quite coherent,
attesting to the accuracy of the EO heuristic.

a few universal functions. For instance, if the sum for H
in equation (2) were over a large number of uncorrelated
random variables λi, H would be Gaussian distributed.
In such a spectrum, the probability of finding H → −∞
decays faster than any power, and ground states e0 would
be distributed according to a Gumbel distribution, [7,31]

gm(x) = w exp
{

m
x − u

v
− m exp

[
x − u

v

]}
(4)

with m = 1, where m refers to the m th lowest extreme
value.

Clearly, in a spin glass the local energies λi are not
uncorrelated variables and deviations from the universal
behavior may be expected. In particular, these deviations
should become strongest when all spin variables are di-
rectly interconnected such as in the SK model, but may
be less so for sparse graphs. Indeed, in the SK model with
Gaussian bonds references [6,7] find numerically highly
skewed distributions for e0 which do not fit to the Gum-
bel distribution in equation (4) for m = 1. In Figure 3,
we plot the rescaled distribution of ground state energies
obtained here for ±J bonds. The result resembles those
of reference [7] to a surprising degree. In fact, a naive fit
of equation (4) for variable m to the SK-data, as sug-
gested by reference [7], yields virtually identical results,
with m ≈ 5. This may indicate a high degree of universal-
ity with respect to the choice of bond distribution in the
SK model, or a new universality class of extreme-value
statistics for correlated variables. In Figure 3 we have also
included data for k + 1-connected Bethe lattices from ref-
erence [28] for k + 1 = 3 and 25, which seem to suggest
a smooth interpolation in k between a normal distribu-
tion and the SK result. Hence, while the distribution of e0

seems to be universal with respect to bond distribution,
its connectivity-dependence appears to disfavor the exis-
tence of a (unique) universal extreme-value statistic for
correlated energies (see also reference [32]).
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Fig. 3. Plot of the rescaled probability distribution of ground
state energies using ±J bonds. Shown are the data for the
SK model and for Bethe lattices of connectivity k + 1 = 3
and 25 from reference [28]. The data for increasing k seems to
evolve away from a Gaussian (solid line) towards the SK data
(k = ∞), the latter fitted by equation (4). The values obtained
in the fit (dashed line) are u = 0.26, v = 2.23, w = 90, and
m = 5.4.

We now consider the scaling of the standard deviations
in the distribution of e0 with respect to system size,

σ(e0) =
√
〈e2

0〉 − 〈e0〉2 ∼ N−ρ. (5)

where ρ is the fluctuation exponent. Similarly, the fluc-
tuations of e0 appear to be narrower than normal, with
ρ > 1/2 in equation (5). Early theoretical work [20,21]
suggested a value of ρ = 5/6. More recent numerical
work [5,7] instead is pointing to a lower value. Refer-
ence [22] has advanced an alternative argument in favor
of ρ = 3/4, based on corrections in the zero-mode of the
propagator due to fluctuations.

In Figure 4 the numerical results for the standard de-
viations in the distribution of ground state energies e0 is
shown. The asymptotic scaling for N ≥ 63 is certainly
very close to ρ = 3/4. The crossover toward asymptotic
behavior is similar to the results found for Gaussian bonds
using a GA (see Fig. 1 in Ref. [7]), except that the EO
data reaches about half a decade further into the asymp-
totic regime. A fit, weighted by the statistical error, to
the data points in the scaling regime yields ρ = 0.750(3),
or 3/4 within 0.4%, with a goodness-of-fit Q = 1. As the
inset of Figure 4 shows, any apparent trend towards a
higher value [7] then ρ = 3/4 is easily explained in terms
of scaling corrections, for instance, in powers of 1/N1/4.

4 Conclusions

We have shown that the extremal optimization heuris-
tic can be extended successfully to highly connected sys-
tems. Results for the ground states of the SK model are
consistent with previous studies while reaching assuringly

Fig. 4. Plot of the standard deviation in the distribution of
ground state energies e0 vs. the system size N . Asymptotic
scaling sets in for N ≥ 63, clearly favoring N−3/4. A fit (full
line) of these data points extrapolates to ρ = 0.7500(29). The
inset shows the same data reduced by the predicted asymp-
totic scaling, σ(e0)/N

−3/4, as a function of 1/N1/4. Any devi-
ation from N−3/4-scaling would appear as divergent behavior
for N → ∞. Instead, the scaling corrections are well-captured,
say, by a simple parabola in 1/N1/4.

larger systems sizes. These results provide more confi-
dence into conjectures about as-of-yet unobtainable scal-
ing exponents. Comparison with data for k + 1-connected
mean-field spin glasses on Bethe lattices suggest a smooth
interpolation in k for the extreme-value statistic of the
ground-state energy between a Gaussian distribution for
small k and a highly skewed Gumbel distribution with
m ≈ 5 for the SK model (k → ∞).
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